Success in the pharmaceutical drug development pipeline depends on basic and preclinical research practices that facilitate effective drug discovery and clinical translation. The advent of new molecular genome-altering technologies allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides (ASO), allow for even greater exploration into genomics and systems biology.
Most standard genetically humanized mouse models only integrate the human coding sequences into the mouse genome. However, recent studies in genomic analysis have revealed the importance of the non-coding genome (both transcribed and non-transcribed), highlighting the need to include non-coding sequences in humanized mouse models. One of the main advantages of Cyagen’s TurboKnockout-Pro approach is that we can introduce larger human DNA fragments (including non-coding sequences) into the mouse genome, so the term "genomically" is used to differentiate these from the regular genetically humanized mouse models.